The SA Journal Diabetes & Vascular Disease Volume 18 No 2 (November 2021)
SA JOURNAL OF DIABETES & VASCULAR DISEASE RESEARCH ARTICLE VOLUME 18 NUMBER 2 • November 2021 23 Conclusion Elevated intrarenal artery RI is prevalent among patients with DM with DN and those with DM without DN, while elevated glycated haemoglobin and hypertension predicted the occurrence of elevated RI in subjects with DM without DN and those with DM with DN, respectively. The Doppler ultrasonographic scan using RI has a role in screening for early kidney damage among patients with DM, while optimal glycaemia and blood pressure control have the potential of preventing raised RI and kidney damage in individuals with DM. The authors acknowledge the contribution of Mrs Olakiitan Abiola, who participated in the recruitment of participants into the study. References 1. Cho N, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018; 138 : 271–281. 2. Hilawe EH, Yatsuya H, Kawaguchi L, Aoyama A. Differences by sex in the prevalence of diabetes mellitus, impaired fasting glycaemia and impaired glucose tolerance in sub-Saharan Africa: a systematic review and meta-analysis. Bull World Health Org 2013; 91 : 671–682. 3. Hall V, Thomsen RW, Henriksen O, Lohse N. Diabetes in sub-Saharan Africa 1999– 2011: epidemiology and public health implications. A systematic review. BMC Public Health 2011; 11 (1): 564 –576. 4. Atun R, Davies JI, Gale EA, Bärnighausen T, Beran D, Kengne AP, et al. Diabetes in sub-Saharan Africa: from clinical care to health policy. Lancet Diabetes Endocrinol 2017; 5 (8): 622–667. 5. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2004; 27 (5): 1047. 6. Thomas B. The global burden of diabetic kidney disease: time trends and gender gaps. Curr Diabetes Rep 2019; 19 (4): 1–7. 7. Martínez-Castelao A, Navarro-González JF, Górriz JL, De Alvaro F. The concept and the epidemiology of diabetic nephropathy have changed in recent years. J Clin Med 2015; 4 (6): 1207–1216. 8. Ayodele OE, Alebiosu CO, Salako BL. Diabetic nephropathy – a review of the natural history, burden, risk factors and treatment. J Natl Med Assoc 2004; 96 (11): 1445–1454. 9. Arogundade FA, Sanusi AA, Hassan MO, Akinsola A. The pattern, clinical characteristics and outcome of ESRD in Ile-Ife, Nigeria: is there a change in trend? Afr Health Sci 2011; 11 (4): 594–601. 10. Alebiosu CO, Ayodele OE. The increasing prevalence of diabetic nephropathy as a cause of end stage renal disease in Nigeria. Trop Doct 2006; 36 (4): 218–219. 11. Oh SW, Kim S, Na KY, Chae DW, Kim S, Jin DC, et al. Clinical implications of pathologic diagnosis and classification for diabetic nephropathy. Diabetes Res Clin Pract 2012; 97 (3): 418–424. 12. Kelley K, Aricak OT, Light RP, Agarwal R. Proteinuria is a determinant of quality of life in diabetic nephropathy: modeling lagged effects with path analysis. Am J Nephrol 2007; 27 (5): 488–494. 13. Comper WD, Russo LM. Where does albuminuria come from in diabetic kidney disease? Curr Diab Rep 2008; 8 (6): 477–485. 14. Levey AS, Inker LA. Assessment of glomerular filtration rate in health and disease: a state of the art review. Clin Pharmacol Ther 2017; 102 (3): 405–419. 15. Pujari RM, Hajare VD. Analysis of ultrasound images for identification of chronic kidney disease stages. In: 2014 First International Conference on Networks & Soft Computing (ICNSC2014) 2014; 380–383. 16. Chang EH, Chong WK, Kasoji SK, Fielding JR, Altun E, Mullin LB, et al. Diagnostic accuracy of contrast-enhanced ultrasound for characterization of kidney lesions in patients with and without chronic kidney disease. BMC Nephrol 2017; 18 (1): 266. 17. Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014; 129 (5): 587–597. 18. Bank N, Klose R, Aynedjian HS, Nguyen D, Sablay LB. Evidence against increased glomerular pressure initiating diabetic nephropathy. Kidney Int 1987; 31 (4): 898–905. 19. Raut TP, Patil TB, Khot RS, Sargar KM, Patil MB, Bansod YV. Clinical profile of diabetic nephropathy and correlation with intrarenal resistivity index by duplex ultrasonography. World J Nephrol 2012; 1 (4–5): 107–114. 20. Abd El Dayem S, El magd El Bohy A, El Shehaby A. Value of the intrarenal arterial resistivity indices and different renal biomarkers for early identification of diabetic nephropathy in type 1 diabetic patients. J Ped Endocrinol Meta . 2016; 29 (3): 273–279. 21. Kim SS, Kim JH, Kim IJ. Current challenges in diabetic nephropathy: early diagnosis and ways to improve outcomes. Endocrinol Metab 2016; 31 (2): 245. 22. Ajayi S, Raji Y, Bello T, Jinadu L, Salako B. Unaffordability of renal replacement therapy in Nigeria. Hong Kong J Nephrol 2016; 18 : 15–19. 23. Levey AS, Stevens LA, Schmid CH, Zhang Y, Castro III AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Internal Med 2009; 150 (9): 604–612. 24. Eibenberger K, Schima H, Trubel W, Scherer R, Dock W, Grabenwöger F. Intrarenal Doppler ultrasonography: which vessel should be investigated? J Ultrasound Med 1995; 14 (6): 451–455. 25. Drelich-Zbroja A, Kuczynska M, Swiatłowski Ł, Szymanska A, Elwertowski M, Marianowska A. Recommendations for ultrasonographic assessment of renal arteries. J Ultrasound 2018; (75):338. 26. American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes – 2020. Diabetes Care 2020; 43 (Suppl 1): S14–31. 27. Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A, Goldstein DE. Defining the relationship between plasma glucose and HbA 1c : analysis of glucose profiles and HbA 1c in the Diabetes Control and Complications Trial. Diabetes Care 2002; 25 (2): 275–278. 28. Fineberg D, Jandeleit-Dahm KA, Cooper ME. Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol 2013; 9 (12): 713. 29. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA CARVETREND 6,25, 12,5, 25 mg. Each tablet contains 6,25, 12,5, 25 mg carvedilol respectively. S3 A37/7.1.3/0276, 0277, 0278. NAM NS2 08/7.1.3/0105, 0104, 0103. BOT S2 BOT1101790, 1791, 1792. For full prescribing information, refer to the professional information approved by SAHPRA, December 2014. CDG726/05/2021. CUSTOMER CARE LINE 0860 PHARMA (742 762) www.pharmadynamics.co.za RESTORE cardiac function ß C A R V E D I L O L 6,25 mg 12,5 mg 25 mg
Made with FlippingBook
RkJQdWJsaXNoZXIy NDIzNzc=