Background Image
Table of Contents Table of Contents
Previous Page  18 / 48 Next Page
Information
Show Menu
Previous Page 18 / 48 Next Page
Page Background

REVIEW

SA JOURNAL OF DIABETES & VASCULAR DISEASE

60

VOLUME 12 NUMBER 2 • NOVEMBER 2015

oxidative stress brought on by pro-inflammatory cytokines in neuro-degenerative

processes and the protective role of nitrone-based free radical traps.

Life Sci

1999;

65

: 1893–1899.

56. Rahman I, Gilmour PS, Jimenez LA, MacNee W. Oxidative stress and TNF-alpha

induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial

cells: potential mechanism in gene transcription in lung inflammation.

Mol Cell

Biochem

2002;

234–235

: 239–248.

57. Beyne-Rauzy O, Prade-Houdellier N, Demur C, Recher C, Aye J, Laurent G,

Mansat-De Mas V. Tumour necrosis factor alpha inhibits h-TERT gene expression

in human myeloid normal and leukemic cells.

Blood

2005;

106

: 3200–3205.

58. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis.

Circulation

2002;

105

: 1135–1143.

59. Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis.

Free

Radic Biol Med

2000;

28

: 1708–1716.

60. Klouche M, Gottschling V,

et al

. Atherogenic properties of enzymatically degraded

LDL – selective induction of MCP-1 and cytotoxic effects on human macrophages.

Arterioscler Thromb Vasc Biol

1998;

18

: 1376–1385.

61. Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation

of monocyte chemoattractant protein-1 and monocyte adhesion to human

coronary artery endothelial cells.

Circulation

2000;

101

: 2889–2895.

62. Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease.

Cell Signal

2011;

23

: 1515–1527.

63. Breitschopf K, Zeiher AM, Dimmeler S. Pro-atherogenic factors induce telomerase

inactivation in endothelial cells through an Akt-dependent mechanism.

FEBS Lett

2001;

493

: 21–25.

64. Miyauchi H, Minamino T, Tateno K,

et al

. Akt negatively regulates the

in vitro

lifespan of human endothelial cells via a p53/p21-dependent pathway.

EMBO J

2004;

23

: 212–220.

65. Rosso A, Balsamo A, Gambino R, Dentelli P,

et al

. p53 mediates the accelerated

onset of senescence of endothelial progenitor cells in diabetes.

J Biol Chem

2006;

281

(7): 4339–4347.

66. Minamino T, Komuro I. Vascular cell senescence in human atherosclerosis.

Int

Congress Ser

2004;

1262

: 566–569.

67. Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ. Telomere length

assessment: Biomarker of chronic oxidative stress?

Free Rad Biol Med

2008;

44

:

235–246.

68. Kawanishi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific DNA damage

by oxidative stress and its role in carcinogenesis and aging.

Mutat Res

2001;

488

:

65–76.

69. Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative

stress may accelerate telomere shortening.

FEBS Lett

1999;

453

: 365–368.

70. Von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major

cause of telomere shortening in human fibroblasts.

Free Rad Biol Med

2000;

28

(1): 64–74.

71. Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded

regions in telomeres of human fibroblasts.

Exp Cell Res

1998;

239

: 152–160.

72. Wilson WR, Herbert KE, Mistry Y,

et al

. Blood leucocyte telomere DNA content

predicts vascular telomere DNA content in humans with and without vascular

disease.

Eur Heart J

2008;

29

: 2689–94.

73. Burke A, Fitzgerald GA. Oxidative stress and smoking-induced vascular injury.

Prog Cardiovasc Dis

2003;

46

: 79–90.

74. Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A. Telomere length

inversely correlates with pulse pressure and is highly familial.

Hypertension

2000;

36

: 195–200.

75. Benetos A., Gardner JP, Zureik M, Labat C, Xiaobin L, Adamopoulos C,

et al

. Short

telomeres are associated with increased carotid atherosclerosis in hypertensive

subjects.

Hypertension

2004;

43

: 182–185.

76. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue.

Clin

Endocrinol

2006;

64

(4): 355–365.

77. Yudkin JS, Kumari M,

et al

. Inflammation, obesity, stress and coronary artery

disease.

Atherosclerosis

2000;

148

: 209–214.

78. Baik I, Ascherio A,

et al

. Adiposity and mortality in men.

Am J Epidemiol

2000;

152

: 264–271.

79. Rexode KM, Carey VJ,

et al

. Abdominal adiposity and coronary heart disease in

women.

J Am Med Assoc

1998;

280

: 1843–1848.

80. Beltowski I, Wojcicka G, Jamroz A. Leptin decreases plasma paraxonases 1 (PON

1) activity and induces oxidative stress: the possible novel mechanism for pro-

atherogenic effect of chronic hyperleptinaemia.

Atherosclerosis

2003;

170

: 21–29.

81. Nordfjall I, Elliasson M, Stegmayr B,

et al

. Telomere length is associated with

obesity parameters but with a gender difference. Obesity 2008; 16: 2682–2689.

82. De Fronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis:

the missing links. The Claude Bernard lecture 2009.

Diabetologia

2009;

53

:

1270–1287.

83. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycaemia and atherosclerosis. Cell

Metab

2011;

14

: 575–558.

84. Kido Y, Nakae J, Accili D. Clinical review 125: The insulin receptor and its cellular

targets.

J Clin Endocrinol Metab

2001;

86

: 972–979.

85. Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H, Komuro I. Akt negatively

regulates the in-vitro lifespan of human endothelial cells via a p53/p21-dependent

pathway.

EMBO J

2004;

23

: 212–220.

86. Cantley LC. The phosphoinositide 3-kinase pathway.

Science

2002;

296

: 1655–

1657.

87. Basta G, Schmidt AM, DeCaterina R. Advanced glycation end products and

vascular inflammation: implications for accelerated atherosclerosis in diabetes.

Cardiovas Res

2004;

63

: 582–592.

88. Wendt T, Bucciarelli L, Quet W,

et al

. Receptor for advanced glycation end

products (RAGE) and vascular inflammation: insights into the pathogenesis of

macrovascular complications in diabetes.

Curr Atheroscler Rep

2002;

4

: 228–

237.

89. Brownlee M. Biochemistry and molecular cell biology of diabetic complications.

Nature

2001;

414

: 813–820.

90. Mokini Z, Loredana Marcovscchio M, Chiarelli F. Molecular pathology of oxidative

stress in diabetic angiopathy: Role of mitochondrial and cellular pathways.

Diabetes Res Clin Pract

2010;

87

: 313–321.

91. Esposito K, Nappo F, Marfella R,

et al

. Inflammatory cytokine concentrations

are acutely increased by hyperglycaemia in humans: role of oxidative stress.

Circulation

2002;

106

: 2067–2072.

92. Su Y, Liu XM, Sun YM,

et al

. The relationship between endothelial dysfunction

and oxidative stress in diabetes and pre-diabetes.

Int J Clin Pract

2008;

62

: 877–

882.

93. Hansel B, Giral P, Nobecourt E,

et al

. Metabolic syndrome is associated with

elevated oxidative stress and dysfunctional dense HDL particles displaying

impaired anti-oxidative activity.

J Clin Endocrinol Metab

2004;

89

: 4963–4971.

94. Nishikawa T, Edelstein D, Du XL,

et al

. Normalizing mitochondrial super-oxide

production blocks 3 pathways of hyperglycaemic damage.

Nature

2000;

404

:

787–790.

95. Brodsky SV, Gealekman O, Chen J, Zhang F,

et al

. Prevention and reversal of

premature endothelial cell senescence and vasculopathy in obesity-induced

diabetes by ebselen.

Circ Res

2004;

94

: 377–384.

96. Rosso A, Balsamo A, Gambino R, Dentelli P,

et al

. p53 Mediates the accelerated

onset of senescence of endothelial progenitor cells in diabetes.

J Biol Chem

2006;

281

: 4339–4347.

97. Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M. Association

between oxidative DNA damage and telomere shortening in circulating

endothelial progenitor cells obtained from metabolic syndrome patients with

coronary artery disease.

Atherosclerosis

2008;

198

: 347–353.

98. Adaikalakoteswari A, Balasubramanyam M, Ravikumar R, Deepa R, Mohan V.

Association of telomere shortening with impaired glucose tolerance and diabetic

macroangiopathy.

Atherosclerosis

2007;

195

: 83–89.

99. Olivieri F, Lorenzi M, Antonicelli R,

et al

. Leukocyte telomere shortening in elderly

Type2DM patients with previous myocardial infarction.

Atherosclerosis

2009;

206

: 588–593.

100. Salpea KD, Humphries SE. Telomere length in atherosclerosis and diabetes.

Atherosclerosis

2010;

209

(1): 35–38.

101. Ogami M, Ikura Y, Ohsawa M, Matsuo T,

et al

.

Arterioscler Thromb Vasc Biol

2004;

24

: 546–550.

102. Chang E, Harley CB. Telomere length and replicative ageing in human vascular

tissues.

Proc Natl Acad Sci USA

1995;

92

: 11190–11194.

103. Okuda I, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A. Telomere attrition

of the human abdominal aorta: relationships with age andatherosclerosis.

Atherosclerosis

2000;

152

: 391–398.

104. Samani NJ, van der Harst P. Biological ageing and cardiovascular disease.

Heart

2008;

9

(5): 537–539.

105. Butt HZ, Atturu GNJ, London NJ, Sayers RD, Bown MJ. Telomere length dynamics

in vascular disease: A review. Eur J Vasc Endovasc Surg 2010; 40: 17–26.

106. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening

in atherosclerosis.

Lancet

2001;

358

: 472–473.

107. Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ. White cell telomere

length and risk of premature myocardial infarction.

Arterioscler Thromb Vasc Biol

2003;

23

: 842–846.

108. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Asociation between

telomere length in blood and mortality in people aged 60 years or older.

Lancet

2003;

361

: 393–395.

109. Brouilette SW, Moore JS, McMahon AD,

et al

. Telomere length, risk of coronary

disease and statin treatment in the West of Scotland Primary Prevention Study: a

nested case–control study. Lancet 2007; 369: 107–114.