REVIEW
SA JOURNAL OF DIABETES & VASCULAR DISEASE
60
VOLUME 12 NUMBER 2 • NOVEMBER 2015
oxidative stress brought on by pro-inflammatory cytokines in neuro-degenerative
processes and the protective role of nitrone-based free radical traps.
Life Sci
1999;
65
: 1893–1899.
56. Rahman I, Gilmour PS, Jimenez LA, MacNee W. Oxidative stress and TNF-alpha
induce histone acetylation and NF-kappaB/AP-1 activation in alveolar epithelial
cells: potential mechanism in gene transcription in lung inflammation.
Mol Cell
Biochem
2002;
234–235
: 239–248.
57. Beyne-Rauzy O, Prade-Houdellier N, Demur C, Recher C, Aye J, Laurent G,
Mansat-De Mas V. Tumour necrosis factor alpha inhibits h-TERT gene expression
in human myeloid normal and leukemic cells.
Blood
2005;
106
: 3200–3205.
58. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis.
Circulation
2002;
105
: 1135–1143.
59. Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis.
Free
Radic Biol Med
2000;
28
: 1708–1716.
60. Klouche M, Gottschling V,
et al
. Atherogenic properties of enzymatically degraded
LDL – selective induction of MCP-1 and cytotoxic effects on human macrophages.
Arterioscler Thromb Vasc Biol
1998;
18
: 1376–1385.
61. Li D, Mehta JL. Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation
of monocyte chemoattractant protein-1 and monocyte adhesion to human
coronary artery endothelial cells.
Circulation
2000;
101
: 2889–2895.
62. Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease.
Cell Signal
2011;
23
: 1515–1527.
63. Breitschopf K, Zeiher AM, Dimmeler S. Pro-atherogenic factors induce telomerase
inactivation in endothelial cells through an Akt-dependent mechanism.
FEBS Lett
2001;
493
: 21–25.
64. Miyauchi H, Minamino T, Tateno K,
et al
. Akt negatively regulates the
in vitro
lifespan of human endothelial cells via a p53/p21-dependent pathway.
EMBO J
2004;
23
: 212–220.
65. Rosso A, Balsamo A, Gambino R, Dentelli P,
et al
. p53 mediates the accelerated
onset of senescence of endothelial progenitor cells in diabetes.
J Biol Chem
2006;
281
(7): 4339–4347.
66. Minamino T, Komuro I. Vascular cell senescence in human atherosclerosis.
Int
Congress Ser
2004;
1262
: 566–569.
67. Houben JMJ, Moonen HJJ, van Schooten FJ, Hageman GJ. Telomere length
assessment: Biomarker of chronic oxidative stress?
Free Rad Biol Med
2008;
44
:
235–246.
68. Kawanishi S, Hiraku Y, Oikawa S. Mechanism of guanine-specific DNA damage
by oxidative stress and its role in carcinogenesis and aging.
Mutat Res
2001;
488
:
65–76.
69. Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative
stress may accelerate telomere shortening.
FEBS Lett
1999;
453
: 365–368.
70. Von Zglinicki T, Pilger R, Sitte N. Accumulation of single-strand breaks is the major
cause of telomere shortening in human fibroblasts.
Free Rad Biol Med
2000;
28
(1): 64–74.
71. Petersen S, Saretzki G, von Zglinicki T. Preferential accumulation of single-stranded
regions in telomeres of human fibroblasts.
Exp Cell Res
1998;
239
: 152–160.
72. Wilson WR, Herbert KE, Mistry Y,
et al
. Blood leucocyte telomere DNA content
predicts vascular telomere DNA content in humans with and without vascular
disease.
Eur Heart J
2008;
29
: 2689–94.
73. Burke A, Fitzgerald GA. Oxidative stress and smoking-induced vascular injury.
Prog Cardiovasc Dis
2003;
46
: 79–90.
74. Jeanclos E, Schork NJ, Kyvik KO, Kimura M, Skurnick JH, Aviv A. Telomere length
inversely correlates with pulse pressure and is highly familial.
Hypertension
2000;
36
: 195–200.
75. Benetos A., Gardner JP, Zureik M, Labat C, Xiaobin L, Adamopoulos C,
et al
. Short
telomeres are associated with increased carotid atherosclerosis in hypertensive
subjects.
Hypertension
2004;
43
: 182–185.
76. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue.
Clin
Endocrinol
2006;
64
(4): 355–365.
77. Yudkin JS, Kumari M,
et al
. Inflammation, obesity, stress and coronary artery
disease.
Atherosclerosis
2000;
148
: 209–214.
78. Baik I, Ascherio A,
et al
. Adiposity and mortality in men.
Am J Epidemiol
2000;
152
: 264–271.
79. Rexode KM, Carey VJ,
et al
. Abdominal adiposity and coronary heart disease in
women.
J Am Med Assoc
1998;
280
: 1843–1848.
80. Beltowski I, Wojcicka G, Jamroz A. Leptin decreases plasma paraxonases 1 (PON
1) activity and induces oxidative stress: the possible novel mechanism for pro-
atherogenic effect of chronic hyperleptinaemia.
Atherosclerosis
2003;
170
: 21–29.
81. Nordfjall I, Elliasson M, Stegmayr B,
et al
. Telomere length is associated with
obesity parameters but with a gender difference. Obesity 2008; 16: 2682–2689.
82. De Fronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis:
the missing links. The Claude Bernard lecture 2009.
Diabetologia
2009;
53
:
1270–1287.
83. Bornfeldt KE, Tabas I. Insulin resistance, hyperglycaemia and atherosclerosis. Cell
Metab
2011;
14
: 575–558.
84. Kido Y, Nakae J, Accili D. Clinical review 125: The insulin receptor and its cellular
targets.
J Clin Endocrinol Metab
2001;
86
: 972–979.
85. Miyauchi H, Minamino T, Tateno K, Kunieda T, Toko H, Komuro I. Akt negatively
regulates the in-vitro lifespan of human endothelial cells via a p53/p21-dependent
pathway.
EMBO J
2004;
23
: 212–220.
86. Cantley LC. The phosphoinositide 3-kinase pathway.
Science
2002;
296
: 1655–
1657.
87. Basta G, Schmidt AM, DeCaterina R. Advanced glycation end products and
vascular inflammation: implications for accelerated atherosclerosis in diabetes.
Cardiovas Res
2004;
63
: 582–592.
88. Wendt T, Bucciarelli L, Quet W,
et al
. Receptor for advanced glycation end
products (RAGE) and vascular inflammation: insights into the pathogenesis of
macrovascular complications in diabetes.
Curr Atheroscler Rep
2002;
4
: 228–
237.
89. Brownlee M. Biochemistry and molecular cell biology of diabetic complications.
Nature
2001;
414
: 813–820.
90. Mokini Z, Loredana Marcovscchio M, Chiarelli F. Molecular pathology of oxidative
stress in diabetic angiopathy: Role of mitochondrial and cellular pathways.
Diabetes Res Clin Pract
2010;
87
: 313–321.
91. Esposito K, Nappo F, Marfella R,
et al
. Inflammatory cytokine concentrations
are acutely increased by hyperglycaemia in humans: role of oxidative stress.
Circulation
2002;
106
: 2067–2072.
92. Su Y, Liu XM, Sun YM,
et al
. The relationship between endothelial dysfunction
and oxidative stress in diabetes and pre-diabetes.
Int J Clin Pract
2008;
62
: 877–
882.
93. Hansel B, Giral P, Nobecourt E,
et al
. Metabolic syndrome is associated with
elevated oxidative stress and dysfunctional dense HDL particles displaying
impaired anti-oxidative activity.
J Clin Endocrinol Metab
2004;
89
: 4963–4971.
94. Nishikawa T, Edelstein D, Du XL,
et al
. Normalizing mitochondrial super-oxide
production blocks 3 pathways of hyperglycaemic damage.
Nature
2000;
404
:
787–790.
95. Brodsky SV, Gealekman O, Chen J, Zhang F,
et al
. Prevention and reversal of
premature endothelial cell senescence and vasculopathy in obesity-induced
diabetes by ebselen.
Circ Res
2004;
94
: 377–384.
96. Rosso A, Balsamo A, Gambino R, Dentelli P,
et al
. p53 Mediates the accelerated
onset of senescence of endothelial progenitor cells in diabetes.
J Biol Chem
2006;
281
: 4339–4347.
97. Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M. Association
between oxidative DNA damage and telomere shortening in circulating
endothelial progenitor cells obtained from metabolic syndrome patients with
coronary artery disease.
Atherosclerosis
2008;
198
: 347–353.
98. Adaikalakoteswari A, Balasubramanyam M, Ravikumar R, Deepa R, Mohan V.
Association of telomere shortening with impaired glucose tolerance and diabetic
macroangiopathy.
Atherosclerosis
2007;
195
: 83–89.
99. Olivieri F, Lorenzi M, Antonicelli R,
et al
. Leukocyte telomere shortening in elderly
Type2DM patients with previous myocardial infarction.
Atherosclerosis
2009;
206
: 588–593.
100. Salpea KD, Humphries SE. Telomere length in atherosclerosis and diabetes.
Atherosclerosis
2010;
209
(1): 35–38.
101. Ogami M, Ikura Y, Ohsawa M, Matsuo T,
et al
.
Arterioscler Thromb Vasc Biol
2004;
24
: 546–550.
102. Chang E, Harley CB. Telomere length and replicative ageing in human vascular
tissues.
Proc Natl Acad Sci USA
1995;
92
: 11190–11194.
103. Okuda I, Khan MY, Skurnick J, Kimura M, Aviv H, Aviv A. Telomere attrition
of the human abdominal aorta: relationships with age andatherosclerosis.
Atherosclerosis
2000;
152
: 391–398.
104. Samani NJ, van der Harst P. Biological ageing and cardiovascular disease.
Heart
2008;
9
(5): 537–539.
105. Butt HZ, Atturu GNJ, London NJ, Sayers RD, Bown MJ. Telomere length dynamics
in vascular disease: A review. Eur J Vasc Endovasc Surg 2010; 40: 17–26.
106. Samani NJ, Boultby R, Butler R, Thompson JR, Goodall AH. Telomere shortening
in atherosclerosis.
Lancet
2001;
358
: 472–473.
107. Brouilette S, Singh RK, Thompson JR, Goodall AH, Samani NJ. White cell telomere
length and risk of premature myocardial infarction.
Arterioscler Thromb Vasc Biol
2003;
23
: 842–846.
108. Cawthon RM, Smith KR, O’Brien E, Sivatchenko A, Kerber RA. Asociation between
telomere length in blood and mortality in people aged 60 years or older.
Lancet
2003;
361
: 393–395.
109. Brouilette SW, Moore JS, McMahon AD,
et al
. Telomere length, risk of coronary
disease and statin treatment in the West of Scotland Primary Prevention Study: a
nested case–control study. Lancet 2007; 369: 107–114.