REVIEW
SA JOURNAL OF DIABETES & VASCULAR DISEASE
26
VOLUME 11 NUMBER 1 • MARCH 2014
insertional mutagenesis and neoplasia; increasing reprogramming
and differentiation efficiency; and minimising autoimmunity. The
development of cell-based microencapsulation technology using
semi-permeable membranes may afford some protection against
auto-immune destruction of grafted cells.
32
Conclusion
Stem cells offer enormous potential in shifting treatment
paradigms for diabetes towards curation. The utility of stem cells
for the treatment of diabetes has only just begun to be tested in
early preclinical studies, which has revealed demonstrable efficacy
although long-term safety data is lacking. Translation into clinical
trials will further andmore stringently test the pragmatic significance
of stem cells in this regard and will ultimately determine whether
the potential utility of stem cells for the treatment of diabetes is
based on hope or expectation.
Declaration of conflicting interests
The author declares that there is no conflict of interest.
Funding
This research received no specific grant from any funding agency in
the public, commercial, or not-for-profit sectors.
References
1. Thompson JA, Itskovitz-Eldor J,
et al
. Embryonic stem cell lines derived from
human blastocysts.
Science
1998;
282
:1145–1147.
2. Gershon D. Complex political, ethical and legal issues surround research on
human embryonic stem cells.
Nature
2003;
422
: 928–929.
3. Amariglio N, Hirshberg A,
et al
. Donor-derived brain tumor following neural
stem cell transplantation in an ataxia telangiectasia patient.
PLoS Med
2009;
17
:
e1000029.
4. Ralston A, Rossant J. The genetics of induced pluripotency.
Reproduction
2010;
139
: 35–44.
5. Mallanna SK, Rizzino A. Emerging roles of microRNAs in the control of embryonic
stem cells and the generation of induced pluripotent stem cells.
Dev Biol
2010;
344
: 16–25.
6. Dohoon K, Chun-Hyung K,
et al
. Generation of human induced pluripotent stem
cells by direct delivery of reprogramming proteins.
Cell Stem Cell
2009;
4
: 472–
476.
7. Stadtfeld M, Nagaya M,
et al
. Induced pluripotent stem cells generated without
viral integration.
Science
2008;
322
: 945–949.
8. Takahashi K, Tanabe K,
et al
. Induction of pluripotent stem cells from adult
fibroblasts by defined factors.
Cell
2007;
131
: 861–872.
9. DiPersio JF. Diabetic stem-cell ‘mobilopathy’.
N Engl J Med
2011;
365
: 2536–
2538.
10. Saito H, Yamamoto Y,
et al
. Diabetes alters subsets of endothelial progenitor cells
that reside in blood, bone marrow, and spleen.
Am J Physiol Cell Physiol
2012;
302
: C892–C901.
11. Ferraro F, Lymperi S,
et al
. Diabetes impairs haematopoietic stem cell mobilisation
by altering niche function.
Sci Trans Med
2011;
3
: 104ra101; DOI: 10.1126/
scitranslmed.3002191.
12. Fadini GP, Albiero M,
et al
. Diabetes impairs stem cell and proangiogenic cell
mobilization in humans.
Diabetes Care
2013;
36
: 943–949.
13. Orlandi A, Chavakis E,
et al
. Long-term diabetes impairs repopulation of
hematopoietic progenitor cells and dysregulates the cytokine expression in the
bone marrow microenvironment in mice.
Basic Res Cardiol
2010;
105
: 703–712.
14. Oikawa A, Siragusa M
et al
. Diabetes mellitus induces bone marrow
microangiopathy.
Arterioscler Thromb Vasc Biol
2010;
30
: 498–508.
15. Park IK, Morrison SJ,
et al
. Bmi1, stem cells, and senescence regulation.
J Clin
Invest
2004;
113
: 175–179.
16. Spinetti G, Cordella D
et al
. Global remodelling of vascular stem cell niche in bone
marrow of diabetic patients.
Circ Res
2013;
112
: 510–522.
17. Fadini GP, Boscaro E,
et al
. Time course and mechanisms of circulating progenitor
cell reduction in the natural history of type 2 diabetes.
Diabetes Care
2010;
33
:
1097–1102.
18. Assady S, Maor G
et al
. Insulin production by human embryonic stem cells.
Diabetes
2001;
50
: 1691–1697.
19. Rezania A, Bruin JE,
et al
. Maturation of human embryonic stem cell-derived
pancreatic progenitors into functional islets capable of treating pre-existing
diabetes in mice.
Diabetes
2012;
61
: 2016–2029.
20. Holland AM, Gonez LJ,
et al
. Progenitor cells in the adult pancreas.
Diabetes
Metab Res Rev
2004;
20
: 13–27.
21. Jonsson J, Carlsson L,
et al
. Insulin-promoter-factor 1 is required for pancreas
development in mice.
Nature
1994;
371
: 606–609.
22. Ramiya VK, Maraist M.
et al
. Reversal of insulin-dependent diabetes using islets
generated in vitro from pancreatic stem cells.
Nat Med
2000;
6
: 278–282.
23. Bonner-Weir S, Toschi E.
et al
. The pancreatic ductal epithelium serves as a
potential pool of progenitor cells.
Pediatr Diabetes
2004;
5
(Suppl. 2): 16–22.
24. Zulewski H. Differentiation of embryonic and adult stem cells into insulin
producing cells.
Panminerva Med
2008;
50
: 73–79.
25. Hussain MA and Theise ND. Stem-cell therapy for diabetes mellitus.
Lancet
2004;
364
: 203–205.
26. Bonner-Weir S, Taneja M,
et al
. In vitro cultivation of human islets from expanded
ductal tissue.
Proc Natl Acad Sci USA
2000;
97
: 7999–8004.
27. Sun Y, Chen L,
et al
. Differentiation of bone marrowderived mesenchymal stem
cells from diabetes patients into insulin-producing cells in vitro.
Chin Med J
2007;
120
: 771–776.
28. Jiang R, Han Z,
et al
. Transplantation of placenta-derived mesenchymal stem cells
in type 2 diabetes: A pilot study.
Front Med
2011;
5
: 94–100.
29. Haller MJ, Viener H-L,
et al
. Autologous umbilical cord blood infusion for type 1
diabetes.
Exp Hematol
2008;
36
: 710–715.
30. Lowry WE, Richter L,
et al
. Generation of human induced pluripotent stem cells
from dermal fibroblasts.
Proc Natl Acad Sci USA
2008;
105
: 2883–2888.
31. Alipio Z, Ward DC,
et al.
Reversal of hyperglycemia in diabetic mouse models
using induced-pluripotent stem (iPS)-derived pancreatic
β
-like cells.
Proc Natl
Acad Sci USA
2010;
107
: 13426–13431.
32. De Vos P, Faas MM,
et al
. Alginate-based microcapsules for immunoisolation of
pancreatic islets.
Biomaterials
2006;
27
: 5603–5617.